A Class Of Univalent Analytic Functions With Fixed **Second And Third Coefficients**

¹S. Lalitha Kumari, ²V.Srinivas ¹Research Scholar, ²Professor ¹Department of Mathematics, ¹Rayalaseema University, Kurnool, India

Abstract: In this paper we defined a new class of univalent and analytic functions with fixed second and third Taylor coefficients. Coefficient condition, starlikeness and convexity, extreme points, growth and distortion properties for this class are investigated.

IndexTerms – Univalent function

I. Introduction

Let S be the class of functions of the form $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ that are analytic and univalent in the unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$. Let T be the subclass of functions of S which are of the form

 $f(z) = z - \sum_{n=2}^{\infty} a_n z^n$, $a_n \ge 0$, n = 2, 3, ...

in U and C be the subclass of functions of T which are convex in U. We have $f \in C$ if and only if $zf' \in T$.

Now we introduce a subclass $T(b, c, B_n) \subseteq T$ by fixing a_2 and a_3 , for $0 \le b \le \frac{1}{4}$, $0 \le c \le \frac{1}{12}$ and $B_n \ge n(n+1)$ for $n \ge 2$,

$$T(b,c,B_n) = \{f(z) \in T: f(z) = z - bz^2 - cz^3 - \sum_{n=4}^{\infty} a_n^4 z^n, \sum_{n=3}^{\infty} B_n^{12} a_{n+1} \le 2b - cB_2\}.$$

Let $C(b, c, B_n)$ be a subclass of functions of $T(b, c, B_n)$ which is convex in U.

This paper consists of two sections. In section 1, we find the coefficient conditions for starlikeness and convexity of the class $T(b,c,B_n)$. In section 2 we find extreme points, growth and distortion properties for the class $T(b,c,B_n)$.

SECTION 1

We need the following definitions from [1].

Definition1: [1] A function $f(z) \in S$ is said to be starlike of order α ($0 \le \alpha < 1$) in U, if it satisfies the inequality $Re\left[\frac{z f'(z)}{f(z)}\right] > \alpha$ for $z \in U$. The class of starlike functions of order α is denoted by $S^*(\alpha)$.

Definition 2: [1] A function $f(z) \in S$ is said to be convex of order α ($0 \le \alpha < 1$) in U, if it satisfies the inequality $Re \left| 1 + \frac{z f''(z)}{f'(z)} \right| > 1$ α for $z \in U$. The class of convex functions of order α is denoted by $C^*(\alpha)$. We have $f \in C^*(\alpha)$ if and only if $zf' \in S^*(\alpha)$.

We start with a coefficient characterization for the functions of T to be in the class $T(b, c, B_n)$.

The function $f(z) = z - bz^2 - cz^3 - \sum_{n=4}^{\infty} a_n z^n$, $z \in U$ is in the class $T(b, c, B_n)$ if and only if $\sum_{n=3}^{\infty} n(n+1) a_{n+1} \leq 2b - 6c$. The result is sharp.

Proof: If $f(z) = z - b z^2 - c z^3 - \sum_{n=4}^{\infty} a_n z^n$, $z \in U$ belongs to the class $T(b,c,B_n)$, Then by the definition, we have $\sum_{n=3}^{\infty} B_n \ a_{n+1} \le 2b - cB_2$ This gives $\sum_{n=3}^{\infty} n(n+1) \ a_{n+1} \le 2b - cB_2$ or $\sum_{n=3}^{\infty} n(n+1) \ a_{n+1} \le 2b - c.2.3$ this shows $\sum_{n=3}^{\infty} n(n+1) \ a_{n+1} \le 2b - 6c$

Now, suppose that $\sum_{n=3}^{\infty} n(n+1) a_{n+1} \le 2b - 6c$ Then $\sum_{n=2}^{\infty} n \, a_n \leq 1$.

Therefore $f(z) \in T$ by [3].

(2)

Since $B_n \ge n(n+1)$ for $n \ge 2$, we obtain

$$\sum_{n=3}^{\infty} B_n \, a_{n+1} \le B_n \frac{2b-6c}{n(n+1)} \le 2b - 6c \le 2b - cB_2$$

This shows that $f(z) \in T(b, c, B_n)$.

Sharpness of the result occurs by taking $f_n(z) = z - b z^2 - c z^3 - \frac{2b-6c}{n(n+1)} z^{n+1}$, $n \ge 3$.

Corollary: If $f(z) = z - b z^2 - c z^3 - \sum_{n=4}^{\infty} a_n z^n \in T(b, c, B_n)$ for $z \in U$, then $a_n \le \frac{2b-6c}{n(n-1)}$ for $n \ge 4$. The result is sharp

Proof: From (2) we have
$$a_{n+1} \le \frac{2b-6c}{n(n+1)}$$
 for $n \ge 3$
Thus $a_n \le \frac{2b-6c}{n(n-1)}$ for $n \ge 4$

By taking the function f(z) of the form $f_n(z) = z - bz^2 - cz^3 - \frac{2b-6c}{(n-1)n}z^n$, $n \ge 4$, we see that the result (4) is sharp.

In the following result we present a sufficient condition for a function in $T(b, c, B_n)$ to be starlike in U.

Theorem-2

A function $f(z) = z - b z^2 - c z^3 - \sum_{n=4}^{\infty} a_n z^n$ belonging to $T(b, c, B_n)$ for $z \in U$, is starlike of order α where $0 \le \alpha < 1$ if $\sum_{n=4}^{\infty} (n-\alpha)a_n \leq (1-\alpha) - (2-\alpha)b - (3-\alpha)c.$

The result is sharp for $f_n(z) = z - b z^2 - \frac{(1-\alpha)-(2-\alpha)b-(3-\alpha)c}{n-\alpha} z^n$, $n \ge 4$.

Proof: For $z \in U$, we have

or
$$z \in U$$
, we have
$$\begin{vmatrix} \frac{zf'}{f} - 1 \end{vmatrix} = \begin{vmatrix} \frac{zf' - f}{f} \end{vmatrix} \\
= \begin{vmatrix} \frac{-bz^2 - 2cz^3 - \sum_{n=4}^{\infty} (n-1)a_n z^n}{1 - bz - cz^3 - \sum_{n=4}^{\infty} a_n z^{n-1}} \end{vmatrix} \\
= \begin{vmatrix} \frac{-(bz + 2cz^2 - \sum_{n=4}^{\infty} (n-1)a_n z^n}{1 - bz - cz^3 - \sum_{n=4}^{\infty} a_n z^{n-1}} \end{vmatrix} \le \frac{\frac{b + 2c + \sum_{n=4}^{\infty} (n-1)a_n}{1 - b - c - \sum_{n=4}^{\infty} a_n}}{1 - b - c - \sum_{n=4}^{\infty} a_n}$$
The expression of the theorem gives
$$\begin{vmatrix} \frac{zf'}{f} - 1 \end{vmatrix} \le \frac{\frac{b^2}{4}}{1 - a^2} = \frac{a^2}{4} + \frac{a^2}{4} + \frac{a^2}{4} + \frac{a^2}{4} + \frac{a^2}{4} = \frac{a^2}{4} + \frac{a^2}{4} = \frac{a^2}{4} + \frac{a^2}{4} = \frac{a^2}{4} =$$

Now, the hypothesis of the theorem gives

$$\left|\frac{zf'}{f} - 1\right| \le 1 - \alpha \tag{4}$$

 $\sum_{n=4}^{\infty} (n-\alpha)a_n \leq (1-\alpha) - (2-\alpha)b - (3-\alpha)c.$

This final inequality is the given condition and hence the proof is complete.

Corollary: A function $f(z) = z - b z^2 - c z^3 - \sum_{n=4}^{\infty} a_n z^n$ belonging to $T(b, c, B_n)$ for $z \in U$, is starlike if $\sum_{n=4}^{\infty} na_n \le 1 - 2b - 3c.$

The result is sharp for
$$f_n(z) = z - b z^2 - c z^3 - \frac{1 - 2b - 3c}{n} z^n, n \ge 4.$$
 (5)

In the next result we present a sufficient condition for a function in $T(b,c,B_n)$ to be convex of order α in U.

Theorem-3

A function $f(z) = z - b z^2 - c z^3 - \sum_{n=4}^{\infty} a_n z^n$ belonging to $T(b, c, B_n)$, for $z \in U$ is in $C(\alpha)$ for $0 \le \alpha < 1$, if $\sum_{n=4}^{\infty} n(n-\alpha)a_n \le (1-\alpha) - (2-\alpha)2b - (3-\alpha)3c.$ The result is sharp for $f_n(z) = z - b z^2 - c z^3 - \frac{(1-\alpha)-(2-\alpha)2b-(3-\alpha)3c}{n(n-\alpha)}z^n$, $n \ge 4$.

Proof: For $z \in U$, we have

$$\begin{split} \left| \frac{z f''(z)}{f'(z)} \right| &= \left| \frac{-2bz - 6cz^2 - \sum_{n=4}^{\infty} n(n-1)a_n z^{n-2}}{1 - 2bz - 3cz^2 - \sum_{n=4}^{\infty} na_n z^{n-1}} \right| \\ &\leq \frac{2b + 6c + \sum_{n=4}^{\infty} n(n-1)a_n}{1 - 2b - 3c - \sum_{n=4}^{\infty} na_n} \end{split}$$

Then
$$\left|\frac{zf''(z)}{f'(z)}\right| \le 1 - \alpha$$

if $\sum_{n=4}^{\infty} n(n-\alpha)a_n \le (1-\alpha) - (2-\alpha)2b - (3-\alpha)3c$.

This final inequality is the given condition and hence the proof is complete.

Corollary:

(6)

A function
$$f(z) = z - b z^2 - c z^3 - \sum_{n=4}^{\infty} a_n z^n \in T(b, c, B_n), z \in U$$
 is in C if $\sum_{n=4}^{\infty} n^2 a_n \le 1 - 4b - 9c$.
Sharpness occurs for $f_n(z) = z - b z^2 - c z^3 - \frac{1 - 4b - 9c}{n^2} z^n, n \ge 4$. (7)

Section 2

In the first result we show that $T(b, c, B_n)$ is a convex family.

Theorem-4

The class $T(b, c, B_n)$ is a convex subfamily of T.

Proof: Let
$$f,g \in T(b,c,B_n)$$

and $f(z) = z - bz^2 - cz^3 - \sum_{n=4}^{\infty} a_n z^n$,
 $g(z) = z - bz^2 - cz^3 - \sum_{n=4}^{\infty} b_n z^n$
 $F(z) = \lambda f(z) + (1 - \lambda)g(z)$
 $= z - bz^2 - cz^3 - \sum_{n=4}^{\infty} [\lambda a_n + (1 - \lambda)b_n] z^n$
 $= z - bz^2 - cz^3 - \sum_{n=4}^{\infty} A_n z^n$ where $A_n = \lambda a_n + (1 - \lambda)b_n$ for $0 \le \lambda \le 1$
 $\sum_{n=3}^{\infty} B_n A_{n+1} = \sum_{n=3}^{\infty} B_n [\lambda a_{n+1} + (1 - \lambda)b_{n+1}]$
 $= \lambda \sum_{n=3}^{\infty} B_n a_{n+1} + (1 - \lambda) \sum_{n=3}^{\infty} B_n b_{n+1}]$
 $\le \lambda (2b - cB_2) + (1 - \lambda)(2b - cB_2)$ (since $f, g \in T(b, c, B_n)$)
 $= (2b - cB_2)$

This shows that $F(z) \in T(b, c, B_n)$.

Hence $T(b, c, B_n)$ is a convex subfamily of T.

In the next result we find the extreme points for the class $T(b, c, B_n)$.

Theorem-5

Let
$$B_n \ge \frac{(n+1)(2b-6c)}{1-2b-3c} > 0$$
 for $n \ge 2$, $0 < b \le \frac{1}{4}$ and $0 < c \le \frac{1}{12}$,
$$f_2(z) = z - bz^2 - cz^3$$

$$f_n(z) = z - bz^2 - cz^3 - \frac{2b-6c}{B_n}z^{n+1}$$
for $z \in U, n \ge 3$. Then $f \in T(b, c, B_n)$ if and only if $f(z)$ can be expressed as
$$f(z) = \sum_{n=2}^{\infty} \lambda_n f_n(z), \ z \in U,$$
where $\lambda_n \ge 0$ for $n \ge 2$ and $\sum_{n=2}^{\infty} \lambda_n = 1$

Proof: Assume that f(z) can be expressed in the form (10). Then

$$f(z) = \sum_{n=2}^{\infty} \lambda_n f_n(z)$$

$$= \lambda_2 f_2(z) + \lambda_3 f_3(z) + \dots + \lambda_n f_n(z) + \dots$$

$$= \lambda_2 (z - bz^2 - cz^3) + \lambda_3 \left(z - bz^2 - cz^3 - \frac{2b - 6c}{B_3} z^4 \right) + \dots$$

$$+ \lambda_n \left(z - bz^2 - cz^3 - \frac{2b - 6c}{B_n} z^{n+1} \right) + \dots$$

$$= (\lambda_2 + \lambda_3 + \dots + \lambda_n + \dots)(z - bz^2 - cz^3) + \left(\frac{\lambda_3}{B_3} z^4 + \dots + \frac{\lambda_n}{B_n} z^{n+1} + \dots \right) (2b - 6c)$$

$$= z - bz^2 - cz^3 - \sum_{n=3}^{\infty} \frac{(2b - 6c)\lambda_n}{B_n} z^{n+1}$$

$$= z - \sum_{n=2}^{\infty} A_n z^n, \quad \text{where } A_n = \frac{(2b - 6c)\lambda_n}{B_n} \text{ for } n \ge 3 \text{ and } A_2 = b, A_3 = c.$$

Here $\sum_{n=2}^{\infty} nA_n \leq 1$

This shows that $f(z) \in T$.

$$\sum_{n=3}^{\infty} B_n A_{n+1} = \sum_{n=3}^{\infty} B_n \frac{2b-6c}{B_{n+1}} \lambda_{n+1}$$

$$= (2b-6c) \sum_{n=3}^{\infty} \frac{B_n}{B_{n+1}} \lambda_{n+1} \le 2b-6c$$

which implies that $f(z) \in T(b, c, B_n)$.

Conversely, suppose that $f(z) = z - bz^2 - cz^3 - \sum_{n=4}^{\infty} a_n z^n$ belongs to the class $T(b, c, B_n)$. Therefore,

$$\sum_{n=3}^{\infty} B_n a_{n+1} \leq 2b - 6c \quad \text{for } n \geq 3$$

For $2b \neq 6c$, if we set

$$\lambda_n = \frac{B_n a_{n+1}}{2b - 6c} \ge 0$$
 for $n \ge 3$, we have $\sum_{n=2}^{\infty} \lambda_n = 1$ shows $\lambda_2 = 1 - \sum_{n=3}^{\infty} \lambda_n$

$$\begin{split} f(z) &= z - bz^2 - cz^3 - \sum_{n=4}^{\infty} a_n \, z^n \\ &= \lambda_2 (z - bz^2 - cz^3) + \sum_{n=3}^{\infty} \lambda_n \left(z - bz^2 - cz^3 - \frac{2b - 6c}{B_n} z^{n+1} \right) \\ &= \sum_{n=2}^{\infty} \lambda_n \, f_n(z) \end{split}$$

Any of the functions (8), (9) cannot be expressed as a proper convex linear combination of distinct functions in $T(b, c, B_n)$. Thus extreme points of $T(b, c, B_n)$ are given by (8) and (9).

Now we find the extreme points for the class $C(b, c, B_n)$.

Corollary

Let
$$B_n \ge \frac{(n+1)^2(2b-6c)}{1-4b-9c} > 0$$
, $0 < b \le \frac{1}{4}$ and $0 < c \le \frac{1}{12}$
 $f_2(z) = z - bz^2 - cz^3$ (10)

$$f_n(z) = z - bz^2 - cz^3 - \frac{2b - 6c}{B_n} z^{n+1}$$
(11)

for $z \in U$, $n \ge 3$. Then $f \in C(b,c,B_n)$ for $z \in U$ if and only if f(z) can be expressed as

 $f(z) = \sum_{n=2}^{\infty} \lambda_n f_n(z)$

where $\lambda_n \ge 0$ for $n \ge 2$ and $\sum_{n=2}^{\infty} \lambda_n = 1$. Extreme points of $C(b, c, B_n)$ are given by (10) and (11).

Now we find growth and distortion bounds for the class $T(b, c, B_n)$.

Theorem-6

Let $f(z) = z - bz^2 - cz^3 - \sum_{n=4}^{\infty} a_n z^n \in T(b,c,B_n)$ for $z \in U$, where $\{B_n\}$ is a non-decreasing sequence with $B_n > 0$ for $n \ge 1$ 2. Then for |z| = r and $z \in U$

$$\max\left\{0, \ r - br^2 - cr^3 - \frac{2b - 6c}{B_3}r^4\right\} \le |f(z)| \le r + br^2 + cr^3 + \frac{2b - 6c}{B_3}r^4.$$

The lower inequality is sharp for

$$f(z) = z - bz^2 - cz^3 - \frac{2b - 6c}{B_3}z^4$$
 when $B_3 \ge \frac{4(2b - 6c)}{1 - 2b - 3c}$ and $0 < b \le \frac{1}{4}$, $0 < c \le \frac{1}{12}$.

Proof:

Since $f(z) \in T(b, c, B_n)$ and sequence $\{B_n\}$ is non-decreasing,

then
$$\sum_{n=3}^{\infty} B_n a_{n+1} \leq 2b - 6c$$
this shows
$$\sum_{n=3}^{\infty} a_{n+1} \leq \frac{2b - 6c}{B_n} \leq \frac{2b - 6c}{B_n}$$

$$|f(z)| \geq \max\{0, |z| - b|z|^2 - c|z|^3 - \sum_{n=4}^{\infty} a_n|z|^n\}$$

$$\geq \max\{0, |z| - b|z|^2 - c|z|^3 - |z|^4 \sum_{n=4}^{\infty} a_n\}$$

$$\geq \max\left\{0, r - br^2 - cr^3 - \frac{2b - 6c}{B_3}r^4\right\}$$

Also,

$$\begin{split} |f(z)| &\leq r + br^2 + cr^3 + \sum_{n=4}^{\infty} a_n r^n \\ &\leq r + br^2 + cr^3 + r^4 \sum_{n=4}^{\infty} a_n \\ &\leq r + br^2 + cr^3 + \frac{2b - 6c}{B_3} r^4 \end{split}$$

Thus we have

$$\max\left\{0, \ r - br^2 - cr^3 - \frac{2b - 6c}{B_3}r^4\right\} \le |f(z)| \le r + br^2 + cr^3 + \frac{2b - 6c}{B_3}r^4.$$

Hence, the proof is complete.

Corollary:

Let $f(z) = z - bz^2 - cz^3 - \sum_{n=4}^{\infty} a_n z^n \in C(b, c, B_n)$ for $z \in U$, where $\{B_n\}$ is a non-decreasing sequence with $B_n > 0$ for $n \ge 2$. Then for |z| = r and $z \in U$, $max\left\{0, r - br^2 - cr^3 - \frac{2b - 6c}{B_3}r^4\right\} \le |f(z)| \le r + br^2 + cr^3 + \frac{2b - 6c}{B_3}r^4$.

$$\max\left\{0, \ r - br^2 - cr^3 - \frac{2b - 6c}{B_3}r^4\right\} \le |f(z)| \le r + br^2 + cr^3 + \frac{2b - 6c}{B_3}r^4$$

The lower inequality is sharp for

$$f(z) = z - bz^2 - cz^3 - \frac{2b - 6c}{B_3}z^4$$
 when $B_3 \ge \frac{16(2b - 6c)}{1 - 4b - 9c}$ and $0 < b \le \frac{1}{4}$, $0 < c \le \frac{1}{12}$

Theorem-7

Let $f(z)=z-bz^2-cz^3-\sum_{n=4}^\infty a_n\,z^n\in T(b,c,B_n)$ for $z\in U$, where $\{B_n\}$ is an increasing sequence with $B_n>0$ for $n\geq 2$. Then for |z|=r and $z\in U$, $\max\left\{0,1-2br-3cr^2-\left(\frac{2b-6c}{B_3}\right)r^3\right\}\leq |f'(z)|\leq 1+2br+3cr^2+\left(\frac{2b-6c}{B_3}\right)r^3.$

$$\max\left\{0, 1 - 2br - 3cr^2 - \left(\frac{2b - 6c}{B_3}\right)r^3\right\} \le |f'(z)| \le 1 + 2br + 3cr^2 + \left(\frac{2b - 6c}{B_3}\right)r^3.$$

The lower inequality is sharp for
$$f(z) = z - bz^2 - cz^3 - \frac{2b - 6c}{4 B_3} z^4$$
, when $B_3 \ge \frac{4(2b - 6c)}{1 - 2b - 3c}$ and $0 < b \le \frac{1}{4}$, $0 < c \le \frac{1}{12}$.

Proof:

By assumption, $f(z) = z - bz^2 - cz^3 - \sum_{n=4}^{\infty} a_n z^n \in T(b, c, B_n)$

Then by Theorem-1, we have

$$\sum_{n=3}^{\infty} n(n+1) \ a_n \le 2b - 6c$$

this shows

$$\sum_{n=3}^{\infty} B_n a_{n+1} \le 2b - 6c$$

which implies

$$\sum_{n=3}^{\infty} a_{n+1} \le \frac{2b-6c}{B_n} \le \frac{2b-6c}{B_3}$$

$$|f'(z)| \ge \max\{0, \ 1 - 2b|z| \frac{-3c|z|^2 - r^3 \sum_{n=4}^{\infty} n \ a_n\}}{\ge \max\left\{0, \ 1 - 2br - \frac{3cr^2}{B_3} - \left(\frac{2b - 6c}{B_3}\right)r^3\right\}}$$

Also

$$|f'(z)| \le 1 + 2br + 3cr^2 + \frac{r^3 \sum_{n=4}^{\infty} n}{1 + 2br + 3cr^2 + \left(\frac{2b - 6c}{B_2}\right)r^3}$$

$$\max\left\{0, 1 - 2br - 3cr^2 - \left(\frac{2b - 6c}{B_3}\right)r^3\right\} \le |f'(z)| \le 1 + 2br + 3cr^2 + \left(\frac{2b - 6c}{B_3}\right)r^3$$

Hence, the proof is complete.

Corollary:

Let $f(z) = z - bz^2 - cz^3 - \sum_{n=4}^{\infty} a_n z^n \in C(b, c, B_n)$ for $z \in U$, where $\{B_n\}$ is an increasing sequence with $B_n > 0$ for $n \ge 2$. Then

$$\max\left\{0, 1 - 2br - 3cr^2 - \left(\frac{2b - 6c}{B_3}\right)r^3\right\} \le |f'(z)| \le 1 + 2br + 3cr^2 + \left(\frac{2b - 6c}{B_3}\right)r^3.$$

The lower inequality is sharp for
$$f(z) = z - bz^2 - cz^3 - \frac{2b - 6c}{4 B_3} z^4$$
, when $B_3 \ge \frac{16(2b - 6c)}{1 - 4b - 9c}$ and $0 < b \le \frac{1}{4}$, $0 < c \le \frac{1}{12}$.

References:

- [1] A. W. Goodman, Univalent functions Volumes-I & II, Mariner Publishing Company (1983).
- [2] Peter L. Duren, Univalent Functions, Springer Verlag, 1983.
- [3] Herb Silverman, Univalent functions with negative coefficients, Proceedings of the American Mathematical Society, Volume 1, Number 1, August 1975 (109-116).
- [4] H. Silverman and E. M. Silvia, Fixed coefficients for subclasses of starlike functions, Houston Journal of Mathematics, Volume 7, No.1, 1981, (129-136).
- [5] Vinod Kumar, On univalent functions with fixed second coefficient, Indian J. Pure and applied Maths 14(11): 1424-1430, November 1983.
- [6] S. Owa H. M. Srivastava, A class of analytic functions with fixed finitely many coefficients, J. Fac. Sci. Tech. Kinki Univ. 23 (1987), 1–10.
- [7] V. Srinivas, On certain classes of analytic functions with fixed second coefficient, J. Ramanujan Math Society-6 Nos 1 & 2[1991], pp 151-166.
- [8] H. E. Darwish, On a subclass of uniformly convex functions with fixed second coefficient., DEMONSTRATIO MATHEMATICA Vol. XLI No 4, 2008, (791-803).