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Abstract: In this paper we defined a new class of univalent and analytic functions with fixed second and third Taylor coefficients.
Coefficient condition, starlikeness and convexity, extreme points, growth and distortion properties for this class are investigated.
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|. INTRODUCTION

Let S be the class of functions of the form f(z) = z + Y7, a,, z" that are analytic and univalent in the unit disk
U=1{z€C:|z| <1}. LetT be the subclass of functions of S which are of the form
f@=z-Yr7a,2", a,=20 n=23,.. Q
in U and C be the subclass of functions of T which are convex in U. We have f € Cifandonly if zf' € T.
Now we introduce a subclass T(b, ¢, B,) € T by fixing a, and a;, for0 < b < % 0<c< é and B, > n(n+1) forn = 2,
T(b,c,B) ={f(2) €ET:f(z) =z—bz?—cz> - ¥ ,a,2z", Y2 3B,a,,1 < 2b—ccB,}.
Let C(b,c,B,) be asubclass of functions of T(b, ¢, B,,) which is convex in U.

This paper consists of two sections. In section 1, we find the coefficient conditions for starlikeness and convexity of the class
T(b,c, B,). Insection 2 we find extreme points, growth and distortion properties for the class T(b, c, B,,).

SECTION 1

We need the following definitions from [1].

Definition1: [1] A function f(z) € S is said to be starlike of order @ (0 < @ < 1) in U, if it satisfies the inequality Re %] >a

for z € U. The class of starlike functions of order @ is denoted by S*(a).

Definition 2: [1] A function f(z) € S is said to be convex of order @ (0 < a < 1) in U, if it satisfies the inequality Re [1 + Z]f,(z()z)] >
a for z € U. The class of convex functions of order a is denoted by C*(a).

We have f € C*(a) ifand only if zf' € S*(a).

We start with a coefficient characterization for the functions of T to be in the class T (b, ¢, B,,).

Theorem-1
The function f(z) =z —bz? —cz3 - Y% ,a, 2",z € Uisintheclass T(b,c,B,) ifand only if
Ymesn(n+ 1) ay.q < 2b — 6¢. The result is sharp.

Proof: If f(z) =z—bz?>—cz3-3¥%_,a,z" ,z € U belongs to the class T(b,c, B,),
Then by the definition, we have Y. _sB, a,.; < 2b —cB,

This gives Y* .n(n+1)a, <2b—cB,
or Ymsnn+1)a, <2b—c.2.3
thisshows Yy n(n+1)a,. <2b— 6¢ 2

Now, suppose that Y5z n(n + 1) a,.q < 2b — 6¢
Then > .na, <1.
Therefore f(z) € T by [3].
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Since B, =2n(n+ 1) forn > 2, we obtain

© 2b—6
Yo aBran < By n(n+1c) <2b—-6c<2b—-cB,

This shows that f(z) € T(b,c,B,) .

Sharpness of the result occurs by taking f,(z) =z —bz%? —c z3 — 2b6c

z"1 n > 3.
n(n+1)

Corollary: If f(z)=z—bz?—cz3 =Yy 4a,2z" € T(b,c,B,) forz € U, then

a, <22=% forn > 4. The result is sharp.
nn-1)
. 2b—-6¢C
Proof: From (2) we have Appq < o forn>3
2b—-6¢
Thus a, < S forn>4 ?3)

2b—-6¢C
(n—-1)n

By taking the function f(z) of the form f,(z) = z — bz? — cz3 — z", n >4, we see that the result (4) is sharp.

In the following result we present a sufficient condition for a function in T (b, ¢, B,,) to be starlike in U.
Theorem-2

A function f(z) =z—bz?—cz®—Y% ,a,z" belonging to T(b,c,B,) for z € U, is starlike of order « where 0 < a < 1 if
Yosn—a)a, <(1—a)—2—-a)b —(3—a)c.

The result is sharp for £,(z) = z — b 2% — ¢ 73 — L2Q=E=Db=G-a)c ) ) > 4

n—-a
Proof: Forz € U, we have

Z_f’_1|: ﬂ|
f f

s |—bzz—2023—2;'l°:4(n—1)an b
1-bz-cz3-3°_,an z"1
_ |-bz+2cz? =33 s(n—1)ay, z™)

b+2c+¥p-4(n—1)ay
1-b—c-Y¥5,an

1-bz—cz3-35_, an 21

Now, the hypothesis of the theorem gives

sz' ~1< 1-a
when Y., (n—a)a, < (1—-a)— (2 —-a)b— (3 —a)c. 4)
This final inequality is the given condition and hence the proof is complete.

Corollary: A function f(z) =z—bz? —cz3 - Y%, a, z" belonging to T(b, ¢, B,) for z € U, s starlike if
Ymeana, <1—2b—3c.

The result is sharp for f,(z) = z— b z2 — ¢ 23 — 22223 .

n

n = 4. 5)
In the next result we present a sufficient condition for a function in T(b, ¢, B,,) to be convex of order a in U.
Theorem-3

Afunction f(z) =z—bz?—cz® - ¥ ,a, z" belongingtoT(b,c,B,), forz€ Uisin C(a)for0 < a <1, if
Yoann—a)a, <(1—-a)—(2—-a)2b—-(3—a)3c.

The result is sharp for f,(z) = z — b 2% — ¢ 73 — L20Q=@-2b=G-@)3c

>
y— nz=4.

)

Proof: For z € U, we have

zf"(2)| _ |-2bz—6cz?-Ypsn(n—1)ay 22
flay | | 1-2bz-3cz?-35_, nap z"1
2b+6c+ Y an(n—-1)a,
1-2b-3c-Y5_,nan

zf"(2)
f'(2)
if Yonn—a)a,<(1—-a)—(2—-a)2b—- (3 —a)3c. (6)
This final inequality is the given condition and hence the proof is complete.

Then <l-a

Corollary:
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Afunction f(z) =z—bz?—cz3 - Y2 ,a,z" € T(b,c,B,), z€ U isinC if
Yo 4nfa, < 1—4b—9c.

1-4b-9
Sharpness occurs for f,(z) =z—bz? —cz3 - S

z" n=>4. (7

TLZ
Section 2

In the first result we show that T'(b, ¢, B,) is a convex family.

Theorem-4
The class T (b, ¢, B,,) is a convex subfamily of T.

Proof: Letf,g € T(b,c,By,)
and f(z) =z—bz?> —cz® - Yy a, 2",
g(z) =z—bz?> —cz® =¥, b, z"
F(z2) =2f(2) + 1 - Dg(2)
=z—bz? —cz3 - Y7 4,[Aa, + (1 — D)by,] z"
=z—bz?—cz® Y2, A,z where A,=Aa,+ (1 —-Ab,for0<1<1
Z;?:S Bn An+1 = 2120:3 Bn [)‘an+1 h (1 nl A)bn+1]
= AXn—3Baanis + (1 =) X3=3 By bnyal
< A(2b —cBy) + (1 — A)(2b — cB;) (since f,g € T(b,c,B,))
= (2b—¢B,)
This shows that F(z) € T(b,c,B,) .
Hence T(b,c, B,) isaconvex subfamily of T.

In the next result we find the extreme points for the class T (b, c, B,,).

Theorem-5
Let B, > D@26 5 5 forn>2 ,0<b<> and 0<c<—,
1-2b-3c " 12
f(2) = z— bz? — cz® , 8
fu(@2) =z —bz? —cz® - 23;6627”'1 9

forze U,n>=3. Then f enT(b, ¢, B,) ifand only if f(z) can be expressed as
f@) =En2Anfa(2), zE€ U,

where 1, = 0forn = 2 and Yoy =1

Proof: Assume that f(z) can be expressed in the form (10). Then
f(2) = Lnzz2 An fn(2)
= Lf2(2) + A3f3(2) + -+ A fu(2) +

= A(z —bz? —cz®) + A5 (z —bz* —cz? —ZbB;GCz") + -
3

— bz? — 73 —2P=6C nt1) 4 .
+/1n(z bz —cz ——Z )+

n
= (A + A+ Ayt )z — bz? = cz%) + (22t 4+ 2270 4 ) (2D - 60)
3 n

_ Zoo (2b—60)An _n+1
n=3"_ g z
n

= z—=Yr Az, where 4, = (Zb_lgﬂ forn>=3and 4, =b,4; =c.

Here Yo ,nAd, <1
This shows that f(z) € T.
2b-6¢C

and Z;?:S By Apyy = Z%0=3 B, mln+1
= (2b— 60) Ny " Any1 < 2b—6c
n+1
which implies that f(z) € T(b,c, B,).

= z—bz?—cz?

Conversely, suppose that ~ f(z) = z — bz? — cz® — ¥%_, a,, z" belongs to the class T'(b, c, B,).
Therefore,
Yz Bpan, <2b—6c¢ for n>3
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For 2b # 6c¢ , if we set
Ay = i’;a”“ >0 for n>3,wehave
anzﬂ, —_ 1 ShOWS 2.2 - 1 - Zn=3 /177.
Then
f(2)=z—bz?—cz’3-Y,a,z"
=Xz —bz? —cz3) + X33 A (Z —bz? —cz3 - ?z"“)
= Yn=2n fn(2)
Any of the functions (8), (9) cannot be expressed as a proper convex linear combination of distinct functions in T(b,c, B,)). Thus
extreme points of T(b, ¢, B,) are given by (8) and (9).

Now we find the extreme points for the class C(b, ¢, By,).

Corollary
205p—
Let B, > ™9 5 0 g<p<lando<cs
f2(z) =z —bz? — c23 (10)
fu(2) =z —bz? —cz® - 2b=6¢ yn+1 (11)

forze U, n>=3. Then f en C(b,c,By,) forz € Uifand only if f(z) can be expressed as
f(@) = Xnz2 An fn(2)

where A, =0forn > 2and Yo An = 1.

Extreme points of C(b, c, B,) are given by (10) and (11).

Now we find growth and distortion bounds for the class T (b, ¢, B,,).
Theorem-6

Let f(z) =z—bz? —cz® - Y% ,a,z" € T(b,c,B,) forz € U, where {B,} isa non-decreasing sequence with B, > 0 forn >
2. Thenfor |z| =rand z € U,

max{O. r—br?—crd -2y ”‘}< IF @] <7+ br? +cr® + 24,
3 3
The lower inequality is sharp for
f(z)=Z—bzz—cz3—2bﬂ;6cz4 WhenB3_Mand0< i,O<CS%.
3
Proof:
Since f(z) € T(b,c,B,) and sequence {B,} is non-decreasing,
then Y s Bhans, < 2b—6¢
this shows SR | 2D
Bn B3
If (2)| 2 max{0, |z| = blz|* - c|z|> = X4 an 12"}
> max{0, |z| —blz|* — c|z|® - |z|* ¥4 an}
> max {0, r—br?—crd— Zb;ﬁcr‘*}
B3
Also,

lf@| < r+br®+cer®+ Y0 a, 1"
< r+bri+cerd+rtyl,a,
< r+br®+crd +2b oc 14
3
Thus we have
2 3 2b-6cC r4
max{O,r—br —cr’ ———r }<|f(z)|<r+br +cerd+——
3

Hence, the proof is complete.

2b-6¢c rt

B3

Corollary:

Let f(z) =z—bz? —cz® - Y% ,a,z" € C(b,c,B,) forz € U ,where {B,} isa non-decreasing sequence
with B, >0 forn > 2. Thenfor|z| =rand z€ U,

max{O, r—>br?—cr3— ? 4} S|lf@lsr+br2+cerd+——
3
The lower inequality is sharp for

2b-6¢c r4

B3
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2b—6¢ 16(2b—6c)

1-4b—9c

1
2

f(z) = z—bz?—cz3 — z* when B; > and 0<b<i, 0<c<

-

Theorem-7

Let f(z) =z—bz? —cz® - Y% ,a,z" € T(b,c,B,) forz € U, where {B,} isan increasing sequence
with B, > 0 forn = 2. Then for |z| =rand z € U,
2b—6 , 2b-6
max {O, 1—2br —3cr? — (TC) r3} <|f'(2)| <1+2br+3cr?+ (B—3C) 3.
The lower inequality is sharp for
2b—6¢C 4

f(2) = z—bz? —cz® =2 7%  when B, > 220

and 0<b<>, 0<c<
4 Bs 1-2b-3c 4

1
12°

Proof:
By assumption, f(z) =z—bz? —cz®—-3¥% ,a, z" € T(b,c,B,)
Then by Theorem-1, we have

Yoann+1)a, <2b—6c

this shows Y3 Bnani, < 2b—6¢

2b-6 2b-6
c < 4

which implies Y3 Qg <
Bn B3

| f'(2)| =2 max{0, 1 —2b|z| — 3c|z|* — > ¥y-4n a,}
> max {O, 1—2br —3cr? — (ZbBi) r3}

3

Also
| f'(2)| <1+2br+3cr?+r3Y%,na,
<1+ 2br+3cr? + (M) 77
B3
Therefore,
2b—6 ; 2b-6
max {0, 1—2br — 3cr? — (?C) r3} <|f'(@| <1+ 2br+3cr? + (B—sc) 73,

Hence, the proof is complete.

Corollary:

Let f(z) =z—bz? —cz® - Y% ,a,z" € C(b,c,B,) forz e U, where {B,} isan increasing sequence
with B, > 0 forn > 2. Then

max (0,1 - 2br - 3er? — () 3} < | /()] < 1+ 2br + 3er? + (225 2.

B3

The lower inequality is sharp for
= 16(2b—6c)

f@) = z—bz? —cz3 —2=%2* when B, >

and 0<b<
4 B3 1-4b-9c

1
, 0<c<—.
12

P
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